Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Immunol Res ; 2023: 2345062, 2023.
Article in English | MEDLINE | ID: covidwho-20235988

ABSTRACT

Recent research has associated the interferon-induced transmembrane protein 3 gene (IFITM3) with the outcomes of coronavirus disease 2019 (COVID-19), although the findings are contradictory. This study aimed to determine the relationship between IFITM3 gene rs34481144 polymorphism and clinical parameters with COVID-19 mortality. The tetra-primer amplification refractory mutation system-polymerase chain reaction assay was used to analyze IFITM3 rs34481144 polymorphism in 1,149 deceased and 1,342 recovered patients. The clinical parameters were extracted from the patients' medical records. In this study, the frequency of IFITM3 rs34481144 CT genotypes (OR 1.47, 95% CI 1.23-1.76, P < 0.0001) in both sexes was significantly higher in deceased patients than in recovered patients. Moreover, IFITM3 rs34481144 TT genotypes (OR 3.38, 95% CI 1.05-10.87, P < 0.0001) in women were significantly associated with COVID-19 mortality. The multivariable logistic regression model results indicated that mean age (P < 0.001), alkaline phosphatase (P = 0.005), alanine aminotransferase (P < 0.001), low-density lipoprotein (P < 0.001), high-density lipoprotein (P < 0.001), fasting blood glucose (P = 0.010), creatinine (P < 0.001), uric acid (P < 0.001), C-reactive protein (P = 0.004), 25-hydroxyvitamin D (P < 0.001), erythrocyte sedimentation rate (P < 0.001), and real-time PCR Ct values (P < 0.001) were linked with increased COVID-19 death rates. In conclusion, IFITM3 rs34481144 gene polymorphism was linked to the mortality of COVID-19, with the rs34481144-T allele being especially important for mortality. Further studies are needed to confirm the results of this study.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Male , Humans , Female , Polymorphism, Single Nucleotide , Membrane Proteins/genetics , COVID-19/genetics , Genotype , Interferons/genetics , RNA-Binding Proteins/genetics
2.
Iran J Microbiol ; 15(1): 128-137, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2265597

ABSTRACT

Background and Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein that projects from the virus surface is highly immunogenic. It is considered to be the target of many neutralizing antibodies as well as a target in vaccine design efforts. Evaluation the immunogenicity of a recombinant fragment of the spike protein (rfsp) that is comprised of Receptor Binding Domain (RBD), S1/S2 cleavage site, and fusion peptide (FP) as immunogenic proteins of SARS-COV-2, in BALB/c mice and evaluation of the efficacy of epitopes rfsp as a multi-subunit chimeric vaccine. Materials and Methods: The present study made use of CHO-K1 (Chinese hamster ovary K1) cells to create a cell line for constant expression rfsp. The rfsp was purified with Ni-NTA chromatography and confirmed by Western blotting. The immunogenicity and neutralizing antibody efficacy of rfsp were evaluated in BALB/c mice. ELISA was employed to test rfsp via sera of COVID-19 convalescent patients infected with SARS-CoV-2 alpha and delta variants. Results: Our results showed significant differences in antibody titers in immunized mice compared to the control groups and neutralizing antibodies were positive, sera from mice immunized are capable of bound SARS-CoV-2 virus, chimer peptide is capable bound antibodies patients infected with SARS-CoV-2 and patients infected with delta variant SARS-CoV-2. Conclusion: Overall, these results indicate that rfsp protein would be a novel potential antigen candidate for the development of a subunit SARS CoV-2 vaccine and rfsp has the potential to be a useful option for the development of the assays for serodiagnosis of SARS-CoV-2 infection.

3.
BioMed research international ; 2022, 2022.
Article in English | EuropePMC | ID: covidwho-2124652

ABSTRACT

The protease produced by the transmembrane serine protease 2 (TMPRSS2) gene enhances viral infections and has been linked to severe acute respiratory syndrome coronavirus 2 pathogenesis. Therefore, this study evaluated the association between TMPRSS2 and coronavirus disease 2019 (COVID-19) mortality. TMPRSS2 rs12329760 polymorphism was genotyped using the tetraprimer amplification refractory mutation system-polymerase chain reaction method in 592 dead and 693 improved patients. In the current study, the frequency of TMPRSS2 rs12329760 CC than TT genotypes was significantly lower in improved patients than in dead patients. According to the findings of the multivariate logistic regression test, higher levels of mean age, creatinine, erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, lower levels of 25-hydroxyvitamin D, uric acid, and real-time PCR Ct values and TMPRSS2 rs12329760 CC genotype were observed to be associated with increased COVID-19 mortality rates. In conclusion, the TMPRSS2 rs12329760 CC genotype was a polymorphism linked to a significantly higher incidence of severe COVID-19. Further studies are required to corroborate the obtained findings.

4.
Hum Genomics ; 16(1): 60, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2139420

ABSTRACT

BACKGROUND: The interferon-induced transmembrane-protein 3 (IFITM3) is a vital component of the immune system's defense against viral infection. Variants in the IFITM3 gene have been linked to changes in expression and the risk of severe Coronavirus disease 2019 (COVID-19). This study aimed to investigate whether IFITM3 rs6598045, quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) values, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are associated with an increased mortality rate of COVID-19. METHODS: The genotyping of IFITM3 rs6598045 polymorphism was analyzed using the amplification refractory mutation system-polymerase chain reaction in 1342 recovered and 1149 deceased patients positive for SARS-CoV-2. RESULTS: In this study, IFITM3 rs6598045 G allele as minor allele frequency was significantly more common in the deceased patients than in the recovered ones. Furthermore, the highest mortality rates were observed in Delta variant and lowest qPCR Ct values. COVID-19 mortality was associated with IFITM3 rs6598045 GG and AG in Delta variant and IFITM3 rs6598045 AG in Alpha variant. A statistically significant difference was observed in the qPCR Ct values between individuals with GG and AG genotypes and those with an AA genotype. CONCLUSION: A possible correlation was observed between the mortality rate of COVID-19, the G allele of IFITM3 rs6598045, and SARS-CoV-2 variants. However, large-scale research is still required to validate our results.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Alleles , Genotype , Membrane Proteins/genetics , RNA-Binding Proteins/genetics
5.
Dis Markers ; 2022: 5988976, 2022.
Article in English | MEDLINE | ID: covidwho-2113116

ABSTRACT

Several studies have discovered a relationship between specific blood types, genetic variations of the ABO gene, and coronavirus disease 2019 (COVID-19). Therefore, the aim of this study was to evaluate the association between ABO rs657152 polymorphisms and ABO blood groups with COVID-19 mortality. The tetraprimer amplification refractory mutation system, polymerase chain reaction method, was used for ABO rs657152 polymorphism genotyping in 1,211 dead and 1,442 improved patients. In the current study, the frequency of ABO rs657152 AA than CC genotypes was significantly higher in dead patients than in improved patients. Our findings indicated that blood type A was associated with the highest risk of COVID-19 mortality compared to other blood groups, and patients with blood type O have a lower risk of infection, suggesting that blood type O may be a protective factor against COVID-19 mortality. Multivariate logistic regression test indicated that higher COVID-19 mortality rates were linked with alkaline phosphatase, alanine aminotransferase, high density lipoprotein, low-density lipoprotein, fasting blood glucose, uric acid, creatinine, erythrocyte sedimentation rate, C-reactive protein, 25-hydroxyvitamin D, real-time PCR Ct values, ABO blood groups, and ABO rs657152 AA genotype. In conclusion, the AA genotype of ABO rs657152 and blood type A were associated with a considerably increased frequency of COVID-19 mortality. Further research is necessary to validate the obtained results.


Subject(s)
ABO Blood-Group System , COVID-19 , Humans , ABO Blood-Group System/genetics , Iran/epidemiology , COVID-19/genetics , Genotype , Polymorphism, Genetic
6.
Iran J Basic Med Sci ; 25(9): 1110-1116, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2040585

ABSTRACT

Objectives: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), giving rise to the coronavirus disease 2019 (COVID-19), has become a danger to wellbeing worldwide. Thus, finding efficient and safe vaccines for COVID-19 is of great importance. As a basic step amid contamination, SARS-CoV-2 employs the receptor-binding domain (RBD) of the spike protein to lock in with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells. SARS-CoV-2 receptor-binding domain (RBD) is the main human antibody target for developing vaccines and virus inhibitors, as well as neutralizing antibodies. A bacterial procedure was developed for the expression and purification of the SARS-CoV-2 spike protein receptor-binding domain. Materials and Methods: In this research study, RBD was expressed by Escherichia coli and purified with Ni-NTA chromatography. Then it was affirmed by the western blot test. The immunogenicity and protective efficacy of RBD recombinant protein were assessed on BALB/c mice. Additionally, RBD recombinant protein was tested by ELISA utilizing sera of COVID-19 healing patients contaminated with SARS-CoV-2 wild type and Delta variation. Results: Indirect ELISA was able to detect the protein RBD in serum of the immunized mouse expressed in E. coli. The inactive SARS-CoV2 was detected by antibodies within the serum of immunized mice. Serum antibodies from individuals recovered from Covid19 reacted to the expressed protein. Conclusion: Our findings showed that RBD is of great importance in vaccine design and it can be used to develop recombinant vaccines through induction of antibodies against RBD.

7.
Int J Immunogenet ; 49(5): 325-332, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2019308

ABSTRACT

Host genetic factors may be correlated with the severity of coronavirus disease 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2) plays a vital role in viral cell entrance. The current study aimed to evaluate the association of ACE2 rs2285666 polymorphism and clinical parameters with COVID-19 mortality. The ACE2 rs2285666 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism in 556 recovered and 522 dead patients. In this study, the frequency of ACE2 rs2285666 CC was significantly higher than TT genotype in dead patients. The multivariate logistic regression analysis results showed that the higher levels of alanine aminotransferase, alkaline phosphatase, creatinine, erythrocyte sedimentation rate, and C-reactive protein and the low levels of uric acid, cholesterol, low density lipoprotein, 25-hydroxyvitamin D, real-time PCR Ct values, and ACE2 rs2285666 CC genotype were associated with increased mortality rates after COVID-19. In conclusion, our findings demonstrated a possible link between COVID-19 mortality, clinical parameters, and ACE2 rs2285666 CC. Further research is required to confirm these results.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , COVID-19/genetics , Humans , Iran/epidemiology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL